首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5519篇
  免费   859篇
  国内免费   1609篇
安全科学   1017篇
废物处理   152篇
环保管理   484篇
综合类   4075篇
基础理论   822篇
污染及防治   518篇
评价与监测   337篇
社会与环境   339篇
灾害及防治   243篇
  2024年   24篇
  2023年   121篇
  2022年   355篇
  2021年   359篇
  2020年   396篇
  2019年   261篇
  2018年   277篇
  2017年   290篇
  2016年   264篇
  2015年   353篇
  2014年   350篇
  2013年   431篇
  2012年   521篇
  2011年   517篇
  2010年   450篇
  2009年   377篇
  2008年   426篇
  2007年   439篇
  2006年   429篇
  2005年   295篇
  2004年   220篇
  2003年   176篇
  2002年   150篇
  2001年   117篇
  2000年   123篇
  1999年   60篇
  1998年   28篇
  1997年   27篇
  1996年   39篇
  1995年   32篇
  1994年   26篇
  1993年   15篇
  1992年   14篇
  1991年   9篇
  1990年   8篇
  1987年   1篇
  1986年   1篇
  1985年   3篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
排序方式: 共有7987条查询结果,搜索用时 15 毫秒
31.
反硝化作用是地下水硝酸盐污染去除最重要的过程.由于水文地质条件和水文地球化学环境的复杂性和不确定性,精准测定含水层反硝化速率是反硝化过程的研究难点.选取潮白河冲洪积扇中部中国环境科学研究院地下水创新野外基地作为研究区,基于野外原位试验和15N同位素示踪法提出一种含水层反硝化速率的测定方法.该方法综合体现了研究区实际水文地质条件和水文地球化学环境对反硝化作用的影响,并充分考虑了硝酸盐在含水层中稀释弥散作用对计算结果的影响.结果表明:①潮白河冲洪积扇中部某地地下26~28 m处于还原环境,含水介质以粉细砂为主,ρ(NO3-N)平均值为2.77 mg/L.②地下26~28 m反硝化速率在349.52~562.99 μg/(kg·d)(以N计,下同)之间,平均值为450.31 μg/(kg·d).通过与研究区含水介质、采样深度和硝酸盐背景值相似的国内外案例对比研究,初步评估结果处于合理区间.③测试结果具有一定不确定性,主要来自忽略中间产物NO2-和NO的计算方法、扰动采样方法、N2O的操作规范程度及采样频率等方面.研究方法为测定含水层硝酸盐速率研究提供了新的思路,研究结果可为地下水中硝酸盐转化过程机理研究、地下水硝酸盐污染修复及风险管控提供关键的理论支撑数据.   相似文献   
32.
为研究厦门市冬季不同PM2.5污染情境与气象条件和气团轨迹路径特征的关系,结合PM2.5观测数据,使用AGAGE(Advanced Global Atmospheric Gases Experiment)统计方法识别2014—2018年冬季厦门市PM2.5观测值、基线值和污染值情境,通过气象数据统计和气团后向轨迹聚类对不同PM2.5污染情境下气象条件和气团轨迹路径特征进行探究.结果表明:①厦门市冬季不同PM2.5污染情境下,ρ(PM2.5)及PM2.5污染值情境时长占比均呈波动中下降的趋势,具体表现为冬季PM2.5观测值、污染值和基线值情境下,ρ(PM2.5)平均值分别从2014年的42.2、90.7、16.4 μg/m3降至2018年的26.3、56.9、8.8 μg/m3,冬季PM2.5污染值情境时长占比从2014年的10.2%降至2018年的3.0%.②冬季PM2.5污染值情境下气象要素呈低风速、低气压、高温度、高相对湿度的特征.③冬季到达厦门市的气团轨迹路径中,局地路径由于大气条件稳定易累积形成PM2.5污染;偏北路径和西北路径易从临近省份携带污染物输入导致PM2.5污染,属于重要的外源污染输入路径;沿海路径和偏西路径均属于清洁路径,但沿海路径易在福建省北部与偏北路径重合形成污染输入,加强了偏北路径的污染物输送能力.研究显示,近年来厦门市冬季PM2.5污染有明显减弱趋势,但不利的气象条件和外来污染输入仍会造成PM2.5污染的发生.   相似文献   
33.
刘星  柳文莉  姜霞  郭冀峰  黄威  刘瑞  张聪 《环境工程》2020,38(12):38-44
研究选取嘉兴市下辖农村的160座生活污水处理设施进出水为研究对象,分析了区域农村生活污水污染物时空分布特征及其处理设施现状,以期提高处理设施效率。结果表明:嘉兴市农村生活污水中氮、磷污染较有机污染更严重,ρ(COD)、ρ(TP)、ρ(TN)、ρ(NH4+-N)年均值分别为142.23,4.02,44.19,27.74 mg/L,各污水处理设施处理效果有很大优化空间,COD、TP、TN、NH4+-N年均去除率分别为50.5%、29.7%、36.8%、51.7%。农村生活污水空间上呈自西向东、由北至南逐渐减小的分布特征,时间上表现为冬季 > 春季 > 秋季 > 夏季。相关性分析表明,COD、TP、TN、NH4+-N之间呈极显著正相关(P<0.01),相关系数为0.688±0.946。设施进水C/N、NH4+-N/TN年均值分别为3.21、68.9%,传统的单一A2/O处理工艺对低碳源污水处理效果不理想,可通过组合工艺设计、规范运营管理、加强后期监测等有效措施来进一步加强污水处理设施处理效果。  相似文献   
34.
选取黑龙江省源头水保护区作为研究对象,根据DEM数据对保护区内随机布设的水质监测点控制单元进行划分并提取单元内的相关指标建立监测点背景特性量化模型,基于量化结果提出地表水环境背景值监测方案,建立背景值数据库.选取研究区自然属性指标与空间属性指标,以空间叠置技术与聚类分析方法对研究区地表水进行背景值分区,最终将黑龙江省分为六大地表水水质背景值地理分区,并计算了各分区地表水环境背景值表征范围.表征范围显示:依据现行标准进行水质评价,保护区内水质背景值已超出Ⅱ类水质标准限值.因此,基于水质背景值研究成果提出了考虑背景值影响下的水环境质量评价方法,并将方法应用于研究区,结果表明方法切实可行且优于单因子评价法.研究成果可为区域制定背景值影响下的水环境评价方法提供科学的数据支撑与理论依据.  相似文献   
35.
近年来,博斯腾湖小湖水位大幅波动引发了湖区生态环境问题,基于最低生态水位的湖泊水量盈缺分析对小湖水量调度和生态保护有积极意义。基于1991—2019年达吾提闸实测小湖水位数据,结合湖盆DEM数据和遥感NDVI数据,分别采用年保证率设定法、湖泊地形分析法和曲线相关法计算小湖区最低生态水位;并利用其他水文、气象和农业活动和湖区水量调控数据,使用主成分分析法解析小湖缺水的主要驱动因子。结果表明:博斯腾湖小湖最低生态水位为1047.18 m,多年平均满足率为31.03%。1991—1998年、2005—2015年和2017年间博斯腾小湖区发生了生态缺水,平均缺水量为0.69×108 m3。上游来水量是小湖生态需水保证情势的主要驱动因素,农业活动和宝浪苏木水量调节活动次之,气候变化影响相对较小。2000年之前,生态缺水主要由湖区水位调控产生;2000年之后,灌区农业取水成为生态缺水主要诱因。该研究结果可以为博斯腾湖小湖水量调控和湿地生态系统恢复保护提供科学依据。  相似文献   
36.
环境要素的变化对浮游植物的群落结构和功能具有重要影响.为揭示洞庭湖南汉垸湖区浮游植物群落结构特征及其影响因素,分别于2017年11月(关泵封水期)和2018年6月(开泵放水期)在洞庭湖区典型堤垸——南汉垸进行了采样调查,并对调查区域内的浮游植物及主要水环境因子进行了系统监测和分析.结果表明:①调查期间共检出浮游植物8门62属,主要隶属于绿藻门(Chlorophyta)、硅藻门(Bacillariophyta)和蓝藻门(Cyanophyta),浮游植物分布表现出较为显著的时间差异性,11月浮游植物的丰度为8.34×106~3.02×108 L-1,6月为1.13×106~2.04×107 L-1.②Shannon-Wiener多样性指数(H')介于1.10~3.24之间,Margalef丰富度指数(d)介于1.42~6.40之间,Pielou均匀度指数(J)介于0.48~0.87之间,多样性评价表明,南汉垸整体上介于轻污染与β-中污染之间,局部采样点为α-中污染.③PCA(主成分分析)结果表明,ρ(TN)、ρ(TP)和ρ(NH4+-N)为南汉垸水体的主要污染因子.④RDA(冗余分析)结果表明,南汉垸浮游植物群落结构分布与pH、ρ(NH4+-N)及ρ(TN)呈正相关,与WT(水温)呈负相关.研究显示,南汉垸水体介于轻污染与β-中污染之间,营养状态及浮游植物群落结构在时间上差异较大.   相似文献   
37.
目的探究密封舱室热防护效率与其内饰材料表面发射率的关系,分析内饰材料发射率对其表面温度、舱室内温度的影响规律。方法采用自行设计的小型密封舱室和加热测量装置,对内饰材料表面及舱室内温度进行测量。结果当内饰材料发射率为0.09时,内饰表面温度为141.2℃,舱室内平均温度仅为90.8℃;内饰材料发射率为0.91时,内饰表面温度为124.4℃,舱室内平均温度为109.1℃。结论试样表面温度随材料发射率的提高而降低,舱室内部空气平均温度随材料发射率的提高而升高;试样表面温度与舱室空气平均温度的温度差随材料发射率的提高而减小;同时,相同试样表面温度与舱室平均温度的温度差随加热温度的提高而增加。  相似文献   
38.
为研究不同来源再生水灌溉对土壤微生物群落结构的影响,以地下水灌溉土壤为对照,采用Illumina MiSeq高通量测序技术对长期利用生活源和工业源再生水灌溉的土壤微生物群落结构进行分析,进一步探究土壤环境因子及其相互作用对微生物群落结构的影响.结果表明,与地下水灌溉相比,长期生活源再生水灌溉可显著提高土壤中TOC、 DOC、 Eh、 NH~+_4-N和TP的含量,长期工业源再生水灌溉导致Cd、 Cr、 Cu、 Pb和Zn在表层土壤大量累积.再生水灌溉显著增加了土壤中Acidobacteria和Planctomycetes的相对丰度,降低了Firmicutes和Tectomicrobia的相对丰度,且不同来源再生水对土壤中功能微生物的影响不同,生活源再生水灌溉可显著增加Chloroflexi和Nitrospirae的相对丰度,而工业源再生水灌溉对Actinobacteria具有显著的抑制作用.db-RDA分析结果表明,生活源再生水灌溉土壤菌群主要受TN、 TP、 DOC和Eh影响(P0.05),工业源再生水灌溉土壤菌群主要受重金属影响(P0.05).长期再生水灌溉可改变土壤环境因子间的相互作用,进而影响微生物群落结构,生活源再生水灌溉土壤中微生物主要受DOC、 TN和TP等营养物质含量的增加和氧化还原条件的改变控制,工业源再生水灌溉土壤中微生物与重金属的积累显著相关.  相似文献   
39.
海绵城市地块汇水区颗粒污染物的传输   总被引:1,自引:0,他引:1  
目前我国海绵工程建设多集中在地块汇水区单元内开展,通过多个低影响开发(LID)设施协同完成地表径流水质水量的调控,但基于地块汇水区尺度下城市面源污染的产生和控制效果鲜有报道.本研究比较分析了不同硬化率地块汇水单元内的面源颗粒污染物晴天累积、降雨冲刷、地表径流及径流输出负荷状况.结果表明,地块汇水单元内硬质路面是面源颗粒污染物贡献的最主要的下垫面类型,中硬化率(61.1%)地块和高硬化率(73.6%)地块路面街尘累积量分别约占汇水区单元的88.4%(2.22~12.51 g·m~(-2))和90.1%(4.99~33.43 g·m~(-2)),对径流SS的输出贡献比率分别约为91.7%(0.97~7.34 g·m~(-2))和90.5%(0.92~18.77 g·m~(-2)),降雨径流SS污染负荷占比分别约为95.2%和83.1%,经LID设施处理后输出径流污染负荷约为地表径流的24.0%和40.2%.硬质路面的街尘晴天累积及降雨冲刷以150μm为主,地表径流及输出径流则以50μm粒径段为主,同时地块不透水比例的增加,细粒径(105μm)颗粒物的累积及冲刷分布增大(24.4%和106.4%),而粒径50μm的颗粒物在路面径流中的分布减小(12.4%).屋面的街尘累积、冲刷及降雨径流的粒径分布状况与硬质路面大致相似,但中硬化率地块(1 000μm)和高硬化率地块(250~450μm、45μm)在3个粒径段范围的颗粒物累积和冲刷相较于路面街尘粒径分布明显增加(1 000μm:58.1%和108.5%; 250~450μm:72.9%和41.8%;45μm:59.2%和64.8%).以上结果揭示了颗粒污染物在地块汇水区尺度下的污染全过程(累积-冲刷-输出)分布及LID设施对地块整体SS污染负荷的控制效果,可为地块汇水单元内LID设施工程绩效的科学评估提供重要参考.  相似文献   
40.
可达性对资源枯竭城市经济转型发展成效的作用机制   总被引:1,自引:0,他引:1  
对外交通联系是资源枯竭城市转型和可持续发展的主要因素。以我国69座资源枯竭城市为研究对象,使用日常可达性指数表征城市对外交通联系水平,利用工业替代产业产值反映经济转型发展程度,通过面板数据模型和地理探测器等方法分析可达性对城市经济转型发展成效的作用机制,揭示不同可达性水平下资源枯竭城市经济转型规律与特征。研究表明:我国资源枯竭城市可达性整体处于中等水平,可达性水平对资源枯竭城市工业替代产业规模与效率具有积极的正向作用,可达性通过影响民营经济、工业园区经济、固定资产投资和高技术产业等因素间接地推进或阻碍资源枯竭城市经济转型发展。鉴于此,各地结合可达性水平差异,适宜采取不同的转型模式和差别化的扶持政策。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号